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ABSTRACT

We consider the average cost per unit time problem for wide bandwidth
noisc driven control systems, where the average cost is in the pathwise sense;
no expectations are used. Let t = time of control and BW = bandwidth. For
our class of processes, we prove various uniformity properties for the
convergence of the pathwise average Costs as t = <, BW = = Let us(-) be a
smooth 8-optimal control for the limit controlled diffusion (the limit as BW =~
=) for the (mcan) average cost per unit time problem. We show that for large
enough t and BW, us(-) is 28-optimal (with a probability arbitrarily close to
}) for the pathwise wide bandwidth problem. This uniformity is important in
applications, 'for we often have only one long sequence to control, and the
expectation is inappropriate. Also, otherwise, as BW = =, it might take longer
and longer to wecll approximate the limit pathwise average cost. Applications
to related ‘pathwise average’ problems are given: the convergence of the
average pathwise errors for an ‘approximate’ non-linear filter with wide
bandwidth observation and system driving noise, and the convergence and
accuracy of Monte Carlo calculations of Liapunov exponents for wide
bandwidth noisc driven systems (as BW = ®) via average cost/unit time
methods. It is also shown for the discounted cost problem that the optimum
pathwise costs converge to the minimum average cost per unit time as both
the discount factor goes to zero, and BW = =,
mrds: pathwise average cost per unit time, ergodic control,

approximations of ergodic control, wide band noise driven systems,
approximate non-lincar {iltering, Liapunov exponents, discounted cost.
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. 1. Introduction
/A‘Avcragc cost pcr unit time (over an infinite time horizon) optimal contro!

problems for diffusion and other Markov models have been dealt with in
[

various waysl“rrhrr&gﬂl},-[.l],\[u/ We treat such a problem for ‘wideband

noise driven’ and related systems, which are ‘close’ to a diffusion, and when

the average is in the pathwise but not necessarily in the mean value sense.

The gencral method works for many other classes of processes which are
suitably approximatcd by an appropriate controlled Markov process. As
C ——

pointed out below and in Sections 4 and 5,_t_hc results have applications to
many other problems where pathwise averages are important, and the noises
are ‘wide band'. /E.g., in Section 5, we treat the problem where both BW —~ =«
and discount factor - 0.

Let the diffusion model be given in the relaxed control form (1.1), where
E(-, -) and of-) arc continuous (other conditions will be listed below) and m () is
an admissible relaxed control [1], [3], [4], over a compact control value space U.

l The relaxcd control might be of the feedback form. The precise definition isin

the Appendix. We note here that m () is a measure over the Borel sets of U.
(1.1) dx = [ b(x,a)m(da)dt + o(x)dw.

In [1), relaxed controls were used to get nearly optimal controls for several
‘wideband’ noise driven systems, and in [3], they were cleverly used to get an
! ‘occupation measure’ for the state-control pair which ultimately aliowed the
authors to demonstrate the existence of an optimal stationary control. These
K advantages also occur for the particular problems to be described below. In

' [1], [2], the cost of concern was ([2]) did not use relaxed controls)
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: _1 T .
‘ (1.2) lim —J Ek(x(t),a)m(dea) = ¥(m),

1 T,
u:‘
o for a bounded continuous k(-).
s":‘
‘::: In practice, of course, one does not have a process which is a diffusion,
. and it is of considerable interest to consider wide bandwidth noise driven
e
X systems of the form
e
%
,“9 .
W : (1.3) x€ = [ b(x,@)m (de) + F(x€,£€)
o where {¢(-) is the wide bandwidth noise. We use the scaling £€(1) = &(t/¢)
Yy
M
:':; for an appropriate ‘*mixing’ process &(-) owing to its convenience in
Ty .
y simplifying the dctails. But it should be clear that the method is of fairly
K
, general applicability. Reference [1] dealt with a system of type (1.3) (with
o]
I weak limit of type (1.1)) and cost of the form (1.2). It was shown, under the
1) °
‘ conditions there that for any & > 0, a smooth §-optimal control ub for (1.1),
[ R4
s (1.2) was also ‘nearly’ optimal for (1.3) and (1.4), for small e.
"
"' =1 T € =€
! (1.4) li —I Ek(x*(t),0)m(da) = ¥*(m)

T T J,
l;'
;:: ie., ]ne_m_ F¢(m€) » lim ¥€(u®) — & for any sequence m¢.
\ €
o
:; Such results are helpful in justifying the use of the ideal limit process (1.1)
¥
' for use in contro! theory. .
o :
3 In [3), Borkar and Ghosh showed the existence of an optimal feedback !
Ky ,
o control for the diffusion model (under this control the diffusion could be 3
D
_ taken to be stationary) and cost function (1.2), but with the E deleted -- a
Y
:: pathwise result. This paper is devoted to a related problem for the model )
{
- t
f (1.3). Define ,
h .
I ‘.
l: :
“ -3
: :
4
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1 (T —
(1.5) Yo(m) = -T—jo K(x(s)@Im,(da),  Y(m) = Tm 7(m),
1 T
a8 s = = KxEs)0m e
0

If m(-) is equivalent to a classical control function u(-), we write u in lieu of
m in 71(m), etc. The ‘pathwise’ convergence result in (3] is of particular
importance in applications, since one often has a single long realization, and
then the cxpectation is not appropriate in the cost function. The results

in [3] (under their conditions) give the existence of a feedback relaxed control
m(-) such that y,(m) = 7 = inf l_'}_x;\ 7y (m) w.p.l.
m

In our problem here, owing to the wideband noise and the appearance of the
two parameters € and T, w.p.] type convergence results are usually either
meaningless or impossible to obtain. Typically, in an application one has a
particular process with a given wide bandwidth driving force. One is interested in
knowing how well good controls for the ‘limit’ problem do on the actual physical
problem. The wide bandwidth driving term is imbedded into a sequence for
purposcs of getting an approximation result, and w.p.] type results might make
little sense.

Let us(-) denote a ‘nice’ &-optimal classical control (‘nice’ is defined in
the next section) for model (1.1) and cost function (1.4). Then we wish to

show (1.8a) and (1.8b):

(18) 7% ZFw®), as €-~0, T-=,
(1.8b) lim P(Y}(m®) > F(u® - 8) =1

for any sequence of admissible relaxed controls mé(.). Since the time
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Y

derivative of 7.§.(m) is O(1/T) uniformly in ¢, m, w, the convergence is S

somewhat stronger than indicated by (1.8). Eqn. (1.8b) implies a type of

uniformity of convergence, since the way that € = 0 and T = *« is not :'.
1‘[

important. Were this ‘uniformity’ not the case, it would be possible that as e ;:'.
st
= 0, a larger and larger T is needed in order to closely approximate the limit b
¢
value. In that case, thc white noise limit (1.1) would not be useful for H
'
predictive or control purposes, when the true model is (1.3). .t“
In Section 2, we list several assumptions and prove (1.8). In order to simplify ;
'l'g
the development, the technique of perturbed test functions from [5] is used. To .|:;
b
‘...
facilitate the calculations, some of the conditions will be adapted from those used :a:
Q)
ot
in that reference -- but many uscful generalizations should be clear. In Section ;’
g,

. . . . )
3, we redevelop the result of Section 2, using a ‘first order perturbed test function’ :.!‘.
.'
[ )")
method, with less smoothness required on the functions and less mixing required ‘0':
on the noisc but more details required in the proof. Some extensions are !
"
. .’ . . . . . J
discussed in Section 4. The ideas of ‘pathwise uniform’ convergence of a sample . \
"
. . . - - \'
average cost per unit tim¢ has many other applications. For example in the 'q:
ot
Monte Carlo evaluation of Liapunov exponents with wide bandwidth noise '.
N
coefficients for linear systems [6]. The formula for these exponents is of the ',
e
form of an average cost per unit time. For this problem, it is shown in Section 4 X
that the Monte Carlo evaluated pathwise average cost per unit time converges (as P

€ -0, T = =) to the same limit that one would obtain were the actual limit

diffusion used for the evaluation. The limit depends only on the correlation \
.\
function of the noisc £€(-). Such a result is essential for the Monte Carlo method ' X
)

. . R e
to be useful, and for the Liapunov exponents of the limit system to be meaningful ¢
l‘.
A
L] ‘.'
lay,
l*
]

)
[ U

]
A

L,
[} "X a3 0 A s ] s §' "y W R P % ‘ Lo T r PR % Yol S T I P P v‘ - -'f‘
‘l.’.I.?‘“'.l";.l'g'l",'l.,'l.,.l"'\.g.l.‘.'l'!'t.. o O Gttty 0!‘.“A'. 00,505,705, N et e atelet, n'.\'l. A LAl A A U AT P B e B Nt L
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indicators of the behavior of the actual (wide bandwidth noise driven) physical
system.

An extension toa problem of average pathwise error per unit time for an
‘approximate’ non-linear filter for a system with wide bandwidth driving and
observation noise is also discussed in Section 4.

In Section 5, we treat extensions to the discounted cost case. Define the

pathwise discounted cost

v B J c-be Jk(x‘(s),a)m‘(da)ds,
0

and let mé(-) be a sequence of 8,-optimal controls. We show that
€ 6y L = 8
(1.9a) VB(u )= Y(u®), as B~0, € ~0,
1.9b lim P(V&(m€) 3 y(u®) - 8) = 1.
(1.9b) lim P(V(m®) > 7(u®) - 5)
The uniformity result is important, since we would not want the speed with
which B = 0 to depend on the bandwidth — in order to get the proper

approximation. The sense in which m€(-) is 6,-optimal is left purposely vague

~ since (1.9) holds for any {(m®(-)}, under the conditions below. Thus for

PR L

small ¢€,8, us(-) is always nearly optimal. There also are extensions to

[4

impulsive and singular control problems.

O -

v
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2. A Basic Convergence Theorem
For corvenience in this section, we usc the assumptions of [5, Chapter 4.6],
with appropriatc modification for the relaxed controls. The system (1.3) will

take the form
(2.1) x€ = [ G(x,0)m,(de) + G (x,1€) + F(x,t€)/e.

(2.1) is a common way of getting a wide bandwidth noise driven system
[5,13,14]). Other forms for F(x,t)/e can be used. See, e.g., the examples in [5]
where the use of perturbed test functions for weak convergence is illustrated.
We use either bounded noise or Gaussian noise. For the first case (A2.1) -
(A2.6) arc uscd. The sccond case is covered by (A2.10). Let Ef denote the
expectation, cionditioncd on t€(s), s € t, and E, the expectation conditioned on

E(s), s €t

A21. G(:), F(+,-), Go(-,-), Fy(-,-) are continuous in (x,8). Gg,(-.8) is

continuous_in x for each § and is bounded. &(-) is_bounded, right continuous

and EGy(x,}) = EF(x,§) = 0.
A22. F_(-,8) is continuous for each {, and is bounded.

A23. Let V(x,}) denote either €Gy(x,§), G, (x,8), F(x,t) or F (x,8). Then

for compact Q,

¢
€ sup ” Ef V(x,k(s))ds| = 0
t/€?

x€Q

in the mean square sense, uniformly in t.

Let F, denote the ith component of F.

A24. There are continuous F(-), () such that

2
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‘ as t =« and thc convergence is uniform in any bounded x-set. '
0
e Define a(x) = -;— [F(x) + 3'(x)). [
Y
o A2.5. For cach compact sct Q,
) o -
]
N sup 6” dTJ ds(E{ F} (x,8(s))F(x,8(T))
w x€Q 1Jye?2  Jp '
. ¥
: = EFLOGREF(GHT)]] = 0
=
P © @
e sy e'j drj dSTEEF(x,E(s))F ' (x,8(T)) ~ EF(x,E(s)F "(x,8(T)]| = 0
- e 1Jyes T ‘
0y
‘ in the mean sguare sense as € = O, uniformly in t. Similarly. when the
b bracketed terms are replaced by their x-gradients.
)
o
" Rcemark.  (A2.4) is just a condition on the rate of convergence of an
I expectation to a ‘stationary’ value as t - =  (A2.3) and (A25) are just
[y t
N conditions on the rate of convergence of a conditional expectation to an '
Q. 1
" expeciation as the ‘time difference’ goes to infinity. They are easily shown .
g to be satisficd under appropriate mixing conditions on §(-) {7, Chapter 4]
o
o) . .
o They are similar to conditions used in [13,14] for weak convergence of a
:“_: sequence of Markov processes.
. Dcfinc E(x.a) = a(x,a) + l_f(x) and the operators A™ (when m is a feedback ]
v :
It s
? relaxed control m_ : sec the Appendix for the definition) and A® and AY as i
L] v
M follows: ]
‘!
¢
¢
z'.
iy
i ]
e 1
{ - 'h '\ -.'I\.‘_.‘\.‘» S oSy *.‘J:.' oy -.:_-.' -.;_-.' - '.:_~.‘ -. -, ."-,—.' -,;,..:,_.:.";.~;.' v, -", :_.}:,.}-;\'_.-}-.:_"".' -:'_.'a',x;,'\:.\-:,.\.;_:_\}x;.'-:.\‘,‘.;,-.}-\-;. (]
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AST(x) = FA0B(x,a) + = T a (x)F, . (x),
x 2 4y M xx;
A™f(x) = [ A%f(x)m (de),

and for AY, we¢ replace the a in the definition of A% by the classical control

function u(-).

A26. The martingale problem for operator A™ has a unigue solution for

each relaxed admissible feedback control m (-), and each initial condition.

The process is a Feller process. The solution of (2.1) is unique in the weak

sense for each ¢ > 0.

Remark. The uniqueness and existence is guaranteed if the operator A™

is that for the system

- [ B(x,c)m (do)dt o(x)dw
(2.2) dx = b(x)dt + [ ] + [ }

0 0

where oo' 3 8l for all x and some 6§ > 0, E(-) and of-) are Lipschitz
continuous and 6(-,-) is merely bounded and Borel measurable and the
dimensions of (the vector) b and (square matrix) oo! are equal.

Let M denote the space of probability measures on the Borel sets of Rf x

U, with the ‘weak compact’ topology where P = P iff If(x,u)Pn(dxda) -
If(x,a)P(dxda) for each continuous function f(.) with compact support. For
an admissible relaxed control for (2.1) and (1.1), resp., define the (occupation)

measure valued random variables P?"(-) and P,'{.‘(-) by, resp.,

. A AT RTR” R A" B & -~ » A L L I M S T




ESA LT LA RN KN A WS L PV 3 YU 19,48, T AN AN A N U UR WPL 4 SR Bt B2 07,040 $2% €27 80 o) AVE a8¢" - Mg ab Thy b W O %728 ~al

N o
. 9

[}
: ; 1 (T

Pm'BXC=—JI m (C)dr,
A

; 1 T

[} m —

2)

t

h We sometimes write m&(-), if the model is (2.1). If the relaxed control for
i:‘ (1.1) is of the feedback form (m_ or u(x)) , then we use the modification
)
; e

b T8 = 1] Tawesf!

K)

K (or with u replacing m), and similarly define PT€(B), P1¢(B) for feedback
)

{
;: m(-) and u(-).
i
~ Let m€(-) be Sl-optimal (in any sense) and let u ¥ ) be defined by (A2.8).
;
" A2.7. The sct of random variables {x€(t), € > 0, t < =} is tight.
)
p - . 3 -

o Rcmark. The tightness in (A2.7) implies the tightness of the set of M
L}
Y valued random variables (PF¢(-), ¢ >0, T < =, u® or above mS(-)). Under a
Y stability condition on the limit equation (1.1) in the absence of control, and
some other conditions, the tightness can be proved by a ‘perturbed Liapunov

1

: function’ method [5). Of course, if the state space is compact, as for the

¥ ‘Liapunov exponent’ problem in Section 4, then (A2.7) always holds. In lieu
/ of a ‘universal stability condition’, a condition on the minimum (over the
; control values) magnitude of the cost k(-) as |[x| = ® was used in [3] (for the
2‘ mode! (1.1)) to get that an optimal control for that model is ‘stabilizing’.
~

Perhaps a similar idea can be used here. But this point won't be pursued.

L,
3 A28. For cach & > 0, ther¢ is a continuous 6-optimal control for (1.1) and
D
'~ (1.2), for which the martingale problem h unique solution for each jnitial
l.
'l
1)
"
'l

Y |

_hvl'
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condition. The solution is a Feller process and there is a unique invariant

measure p(u®,.). [u® is 8-optimal in the sense that F(u®) ¢ Y(m)) + & for the
stationarv initial condition for any feedback relaxed control m_ for which

there is a stationarv solution to the associated martingale problem.]
A.29. k(-) is bounded and continuogus.

Remark. The existence of such smooth 8-optimal controls is dealt with in
[7]. It will exist under an appropriate stability condition on the uncontrolled
(1.1), and cither non-degeneracy of (1.1) or for a system of the form (2.2) [7).
It turns out that ¥(u”) = J(?) w.p.1 (this follows from the method of proof of

Theorem 1 below, or from the method in [3], under the conditions there).

A2.10. (Gaussian case). §(-) is a stable Gauss-Markov process with a
statjonarv transition function and let F(x,§) = F(x)%, Gy(x,8) = Gy(x)§, where
6, Go, and F satisfy the (in x) §mooihncss in (A2.1) - (A2.2). Define I-:(-) and

a(-) as _in (A2.4). [Note: the other parts of (A2.3) - (A2.5)) all hold.]

Theorem 1. Assume either (A2.1) to (A2.9) or (A2.6) to (A2.10). Then
(1.82) and (1.8b) hold.

Proof. We do the ‘Gaussian’ case only. The other case is treated in
essentially the same way. Let F be a (countable) measure determing set of
bounded continuous functions which have continuous second partial derivation,
and are constant for large |x|. Let mf(-)bc the relaxed control in (A2.7). Define
the test function perturbations (the change of scale T/e? ~ T yielding the right

sides of the equations below will be used frequently and often without specific
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p *
p mention) ;
f5(x,t) = I Eff}x)Gy(x,8(T)dT = €* f JE¢ TG, 8(T)dT = O (v, R
! t& t{: ‘;
‘; rfn = | ECLOFGGEmeT/e = ¢ [ EELMFGDIAT = OENEQ), ]
y t t/€ ::
[} l (-] - -] ,
| S = 73 | o as{ETIOFXL L GMF ST b
X t T 4
' — E[f (x)F(x,}(s))} F(x,8¢(T)} g
L) A\ J
- e J dr J ds {E €11 10)F(x, 4N)F(x,E(T)) 2
A t/€2 T ."
» .
: - [ ’ _ 2 € 2 ‘:
: E[f (()F(x, AENLF(x,8(T)) = O ()2 + 1], :
) ]
. The {£€(1)] terms come from the Gauss-Markov property. ':
t
Definc :'
X :f
4 2 )
] FE() = F(x6() + T FExE(L). 3
. i=0 ‘:
; The operator Am“.€ and its domain 1)(;&."‘c '¢) is defined in the Appendix. By ::
w i‘
) a dircct calculation, using the correlation and conditional expeciation ':,
properties of the Gauss-Markov process &(-), we get that f(x€(:)) and the 3
a l‘
: £E(x€(-),-) are all in A™F), and ;
: )
. A
AmSEE(x () = £I(xE)XE() ,
B v':
: Al

gm‘,efg(xe(,),t) = ~f (x ()G y(x(1),£4(t)

-
g

I3
Ay

R [ (EET XX ENG(XE@EE (NI KEC) ds/e
t

ot 5 %

K g o .. - A A K "ot SV ¥4 AL D Ry e T T S W T % SR \'\'\“‘h".‘""'t'v
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-

AmSEEE (e =~ AxEOIF(E.LEW)/¢

o [ o SR e W/,
t
" €
W and similarly for A™ ¢f$(x®(t),t). See the very similar calculation in [7,
Chapter 4] or in [15] where the dynamical terms depend smoothly on x, and
_.a": are right continuous in t.

KN We have
w (2.3a) If(x€(1) = £4O1 = O (I + 11,

A € N €
Y By adding the A™ ¢ff(1) to A™ '€f(x€(1)), subtracting from A™ f(x*(1)) and

cancelling terms where possible we get
s (23b)  JA™ErE(D) — AT (xS = O(IES IR + 1),

All the O(¢) are uniform in t, ¢, w. By equation 4 of the Appendix (with our
f€ replacing the q there), the function

Y. e
(2.4) Mf() = £€(t) = £€(0) -I A™EL€(s)ds

0
A is 2 zero mean martingale. We next show that Mf(t)/t EQast-=and e =0
) in any way at all.

Write (where [t] denotes the greatest integer part of t)

YHORR 1 M2
(2.5) —% = t-[(Mf‘(:) = ME([1]) + ME(0)) + c ngo [Mf(n+1) = Mf(n)].

N T
[ oy o

Using the fact that f(-) is bounded and (2.3), (2.5) and the martingale
property of Mf‘(-), we get that E[Mf(t)/t]2 = O(1)/t. The fact that Mf/t,

f€(t)/t and £€(0)/t all go to zero in probability as t = « (uniformly in ¢)

ey e e e e ey ey i m e oy @ e p e e
R T L G R S A R, A B, GO (L AR (et

“w

------ A

O A TR A AR
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'\
together with (2.4) and the second line of (2.3) implies that as t * ® and ¢ = 0, :'
N t € € P l"x
; (2.63) J A™ f(x%(s))ds/t = 0. "
0 X
»
€ &
, By the dcfinition of PT "¢(-), (2.6a) can be written as :,
x me € P g}
, (2.6b) [ A%(x)PD " €(dxda) ~ 0, as T ~= and € = 0. §
' :
Now, let the control be the classical control function us(-), and choose a :'.
5]
weakly convergent subsequence of the set of random variables {PE‘r €(.), €, T) .
1) \J
(and also that } I:)A“ f(x€(s))ds = 0 w.p.l for ali f(-) € ), indexed by ¢_, T, :‘
J
. A 3
: and with {random) limit denoted by 7(-). We let the limits f(-) be defined on E
) som¢ protability space (ﬁ, ?, ?) with generic variable G. Now, (2.6b) implies .
.(
that . \
1 3
X 8 - _ 'y
- Q.7 [ A" r(x)H(dx) = 0, P-almost all &. ¢
"
K Since our class ¢of f(-) is measure determining, (2.7) implies that almost all
[ by
; realizations of H(-) arc invariant measures for (1.1) (under us). [This is ‘.'
: \
- proved by a slight extension of Prop. 9.2 of ([8]] By uniqueness of the ','
[}
A invariant measure, we can take u(us,-) = §(-) for all W, and the limit f(-) does b
X
P \
) not depend on the choscn subsequence €, Tn. Furthermore, by the definition :
v s "5
- of Py €. o
\ ¥
: t t & \
, f k(x€(s),u(x€(s))ds/t = I k(x,uB(x))P¥ € (dx) i
R 0 0 Ry
; y
) 24 -—
E [ kxS onutu®ian) = 7u®) s
| 1
v "
[} W
' .
: \

L [
:-‘.f"..l’.iu'. "al'c.! t.“ 5.9 7808, I.‘ l‘:.l‘- 'o AL s L li'- » ' (X h'tl" lol . (X ‘ ' G ‘. y ' ‘ .v ' X . ’- . p!'u .!“I ‘o ... '¢ l't~
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Next, choosc a weakly convergent subsequence of (P?E"b),e,'r} (and also
such that (2.6a) = 0 w.p.] for all f(-) € F) indexed by €, T, and with limit
denoted by §(-) (again, defined on some probability space (5, -P-, ?)). For each

w, we can factor .l;(.) as F(dxda) = m_(da)u(dx). We can suppose that the m_(B)

are x-mecasurable for each Borel B and .
By (2.6), for all f(-) € F,
(2.8) [ ASf(x)m (da)u(dx) = 0 for P-almost all .

This implies that (for a.a.w), u(-) is an invariant measure for the process (1.1)

with relaxed feedback control mx(‘). As above wc also have

(2.9) [ k(e om ([du(dx) = lim  77(me) = Fm,).

'n
But, by the &-optimality of u8(.), for almost all @ we have Y(m,)) 2 Y(u?®) - s.
€
Since this is truc for all the limits of the tight set (Pg‘ €(-)¢,T), (1.8b)

follows. Q.E.D.

A i o ¥ ¥ L) e V) Wy, |
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3. Alternative Conditions .2‘
In this section we redo Theorem | under somewhat different conditions. ‘

W

The perturbed test function is only *first order’ here and (2.3) won't hold. But :
. "

similar results are obtained via a direct averaging method of the type ,.:

introduced in [5, Chapter 5]. We will use either bounded ‘mixing’ or Gaussian

noise, as in Section 2, and subsets of the following conditions. Let E denote :%
R

the expectation given §(s), s € t. ‘::
_ 1

A3.l. %(-) is bounded, and right continuous Gy(-,-), G(-,-), F(-,-), F (-,-) ¥

are continuous. ".‘
l"

© !
A3, J EF(x.1(s))ds, [

t o,

v

@ )

I E [f 0OF(x, 8N F(x,8(1))ds :;

t fi{
8

arc bounded and x-continuous uniformly on mpact x-s¢t and uniformly -
¥

in t, w e
.!

t+T \

P

A33. I E,G(x,4(s))ds = 0, 8

¢ :
foreach xastand T~ =,
- \J

A34. There are continuous F(-), a(-) such that with A, given by S\

\
T 1 | &

Ayf(x) = fJF(x) + 5 ni,: aij(x)l'xi‘j(x), &
we have | T - b .:
[ as [ au EgroFt@IFEIE  Agto, 5
t [}

foreach xastand T = =. ¢
"
e
.i

(,
)
e
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A3.5. §(-) is a stablc Gauss-Markov process, with a stationary transition
function. and F(x,2) = F(x)8, Gy(x,8) = G(x)t, and F(-), G(-,-) and G(-) have
the smoothness of (A3.1). [We continue to define l_’(-), a(-) and A, as in

(A3.4), when (A3.5) is used.]

As in Section 1, set A¥(x) = f;(x)a(x,cx) + A f(x), and S(x,cx) = 6(x,or) +
I-'(x).

Thecorem 2. Assume (A2.6) to (A2.9) and either (A3.1) to (A3.4) or_else
(A3.5). Then (1.8a) and (1.8b) hold.

Proof. Let f(-) be as in Theorem 1. We use the ‘direct averaging first
order perturbed test function method’ of [5, Chapter 5). [9], [1], but the
development here is self contained. Define ff(x,t) as in Theorem 1 and set
£8(1) = [(x4(v)) + FE(x(1),t). Then, (write x for x€(t) for convenience herc)

£€(.) € XA™ € and

Ame.ff‘(t) = f1(x) U a(x,a)mf(da) + Go(x,t,‘(t))]

+ :—,'I ds[E{ £ (x)F(x,8€(s))]} F(x,£€(1))
t
+ terms of order O(&)[IEE()? + 1).

(See the expressions given above (2.3).) Using the scale change s/e? - s, the
second term can be seen to be bounded in mean square for the bounded noise
case and O(1)[jt€(t)® + 1] in the Gaussian case.

Define the martingale

-
v
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t L, €
M{@1) = f€(t) - £€0) - j A™ ELE(s)ds.
0
If
P
(3.1) Mf(t)/t ~0 as €=0, t~=,

then as in Theorem 1, we have
' Am€ €€ P
A™ f%(s)ds/t »+ 0, as € =0, t o
0
If we also have that

1 ft ra P
(3.2) ;-I [A"’e"f‘(s) - A"’ef(x‘(s))]ds -0, as €=0, t~=
0

(and also for u®

used in lieu of m€(-)) then the proof can be completed as in
Theorem 1. Thus, we need only shecw (3.1) and (3.2).
To get (3.1), we use the representation (2.5). The martingale difference

M¢ (n+1) = M{(n) equals

n+1 _
rétnen) = 16m) = [ as[rxenf Six@ramE(ded + Golx € )4(s)|
(3.3) n

n+1
+ I dsO(D[1E€(s)? + 1).

n
Since the mcan square value of (3.3) is bounded uniformly in n, w, €, we get
that EM§(1))?/t = O(1/t) and (3.1) holds, exactly as for Theorem 1.

We now prove (3.2). To gsimplify the proof, we drop the fterms
Ia(x,a)mf(da) and Gy(x,t). The first dropped term causes no problems (as in
Theorem ) and the second is dealt with by an averaging method similar to

that employed bclow. Now, we have
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1~ €
—I A™ €£€(s)ds
1728 t 0

t -]
;3::, = :‘L ds I du ES[f}(x(s))F(x(s), € (u))IF(x,8(s))/ €

(3.4) + negligable terms

R E2 t/€2
;::s = TJ ds J du E[f }(x€(e?s)F(x(e%s),8(u))]F(x (€s),E(s))
0

+ negligable terms.

where the negligeable terms go to zero in the mean square sensc as ¢ - 0.
KRN Henceforth, for simplicity, we consider the scalar case and work with only the
o, term f_ (x)F(x,§(u))F(x,§(s)) in (3.4). Write t = NA for integer N and a > 0.
Define |

". o

' Qx) = | du B, (F (L OIFGx,L(5)
R ’

) Then the desired term in (3.4) can be written as

2 H(ib+D)/€?
I ds [ENQ€(x€(e%s),s) — QE(x€(e%),s))

'.;3 (3.5)

2 plid+a)/e?
I ESQ¢(x¥(e%),5)ds.

in/e?

Since EIES ,Q€(x€(e?s),s) — Q€(x€(e?),5)? is bounded uniformly in s, € and
A, the first set of summands in (3.5) are martingale differences with
uniformly (in €, N, t) bounded mean square values. Thus the first sum is

O(1/N) and gocs to zcro in probability as N = = uniformly in ¢, t. By [5,

a__€
}"'- Chapter 3, Theorem 4, Part 1], and the uniform integrability of (A™ '€f€(1), €

o > 0, t < =), the sequence {x€(id+-) — x€(is), i, A > 0, € > 0} is tight in D[0,®)

. - - - - » L]
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b .19 §
J d
' g
N (Skorohod topology). Because of this, we can replace the x€(e%s) in the ith '
summand of the second term in (3.5) by x€(ia) for all i, and only alter the sum by \
': an amount which goes to zero in probability (uniformly in € and N)as A - 0. g
‘ y
o Doing this replacement and using either the Gaussian property (A3.5) or
: else (A3.4) for the bounded noise case, and the continuity of F(-,t) (uniform N
' {
3 in ¢ in the bounded noise case) and the continuity and compact support of )
r 4
X f,.(-) yields that the second sum in (3.5) and !
b
| N 2 clib+8)/€? \
\ (3.6) —I A—J ds [ (x¢Ga))a(x€(iz) '
;' Na ibfe? :
have the same limit in probability as N - = A -0 € -0, NA = = We next f.
i use the tightness of {x€(iA + -) — x€(ia), i, &4 > 0, € > 0) again to replace the ;
‘ Y
: x€@ia) in (3.6) by x%(e%), and get the same result; namely that the limit in :;
s ) )
3 probability is the same as N - =, A -0, ¢ -0, NA ~ = Finally, repeating the N
procedure approximation procedure used from (3.5) on for the various
A 4
neglected terms yields (3.2). Q.E.D. '
|
)
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4. Extensions

L8 A e s e e e, S
PR RE i A RS

Discrete time problem. There are direct extensions to the discrete

parameter model

(4.1) XE, = XE+ ¢ [ GXEm, (da) + €G(XEEE) + vE F(XE,LE).

n

In both (4.1) and (2.1), we can allow some ‘state dependence’ of the noise --
(cf, the ‘Markov’ dcpendent type used in [5, Chapters 4.4 or 5.5]).)

Approximate non-linear filtering. In the following two applications, there is
no control. In Section 7 of [10], an ‘approximate’ non-linear filtering problem
was dcalt with, where the system driving and observation noises were wideband.
It was shown (undcr a condition concerning the uniqueness of a certain invariant

measurc) that the average error (using the notation of that paper)

T
@.1) lim '——j EL&(x€(1)) — (PE(1), )%t
e T o

converged to what one would get if the true optimal filter were used on the
‘limit* process. Here x€(-) is the state of the ‘signal system’ (say, of the form
(2.1)), ¢(-) is bounded and continuous, and P€(.) is the measure valucd output
(not necessarily the conditional distribution) of the ‘approximate’ filters used

in [12). Via the technique of this paper, similar results can be obtained if the

o e e

E in (4.1) were dropped. This is useful, since we would normally filter only

one path -- over a long time -- and the use of the expectation might give an

e

inappropriate measurc of the filter performance.

unov exponen r wid ndwidth noi riven tems. The theory

of Liapunov exponents is well developed for systems of the form

\)
N ' .. - - r o LR & ~pcr-ar - AR SN LV IS N N“ "
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k
(4.2) dx=Axdt+ ¥ Bxodw,,

i=1

where the ‘o’ denotes that the stochastic integral is in the *Stratonovich’ sense
and where the w,(-) are real valued and mutually independent standard
Wiener processes [l1]. The ‘Stratonovich® sense integral is used to be
consistent with the usage in {11] and because it simplifies the identification of
the limit process and its ‘projection’ below in this case. Of practical interest
are the convergence properties of numerical methods of evaluating these
exponents, as well as the study of the asymptotic behavior of wideband noise
driven systems

. k
(43) x¢ = Axt + T B xif,

via the mecthod of Liapunov exponents. In (4.3), the {f(-) are orthogonal and
scalar valued processes. Of particular interest is whether the exponents for
(4.3) converge to those for the limit system (which will be of the general form
of (4.2)) as ¢ = 0.

Under the conditions of Theorem 2 on {i‘(-) = §(-/€?), the above

orthogonality condition, and the normalization

| T L 1
T— J; ds J: Et{i(s)ti(u)du - 5
in probability as t and T go to =, the x(-) of (4.2) is the weak limit of (4.3), if
the initial conditions converge. We can assume this normalization to hold in
general, since otherwise we absorb the ‘constants’ into the B, in the obvious

way.

Define y = x/|x|. Then
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"

y = x/Ix| = x[x'x]/Ix[3/?
and Q

_ x K ‘
(4.9) ye =AY + I Byti-yly'Ayl - y[y' I !fBiy]. Y

) Assume the noise conditions of Theorem 2. Then, it is not hard to show that -f
P{x€(s) #0, any s € T} = 1 for all ¢, T. ;
Of interest is the calculation of quantities such as lim Ej‘gq(ye(s))ds/t for !
t Q'
bounded and continuous q(-). In the Monte Carlo evaluation of the limit, one ‘z:
v
often uses, Y
1t N
(4.5) -J a(yé(s)ds -
tl, .
for large t and some small €, and it is of int¢rest to know whether or not the v
convergence is to the correct limit and whether it is uniform in ¢ and t in the "
sense of (1.8a). [An alternative is of course to fix T < ® and approximate ::
~l
Efgq(y‘(s))ds/T for small € by taking many independent runs and averaging. ..i
But, the ‘uniformity’ questions still arise.] "
Define y(t) = x(t)/|x(t)] and )
b l k Q~
* a(y) = v'Ay + > I [y'(B; + BBy ~ (vy'By)’), y
]
and assume that y(-) has a unique invariant measure on the sphere (this is (::
‘s
true under a Lie algebraic condition on the sct (A, B, i € k) [11]). Then [11] '_:
o

the (maximal) Liapunov exponent is the limit (which is a constant w.p.1)

]~ w.vw

t
(4.6) lim j a(y(s)ds/t. 5
t 0 .
\J
.l
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One is interested in whether (4.5) converges to (4.6) as ¢ =0 and t =~ =

By Theorem 2 (x€(-),y€(-)) ® (x(-),y(-)) (Skorohod topology), and the weak
limit process y(-) is characterized completely by the correlation functions of
the {(-). Let u(.) denote the assumed unique invariant measure for y(-).
Then

t
[ awenas ® fawuan, as e =0, tee,
0

(4.7)

F‘,ﬁ-ﬂ

and the limit value is just the (maximum) Liapunov exponent for x(-). The
general method is applicable to a wide variety of noise processes and can
readily be extended to yield convergence of various numerical approximations
to the (maximal) Liapunov exponcnt for (4.2), via use of either a discrete
time approximation to (4.2) or the various interpolations which can be used to

approximatc the stochastic integrals.
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Appendix

Dcfinition. Let U be a compact set in some Euclidean space. Let the

P

w(-) in (1.1) be a Wicner process with respect to a filtration (F,). A measure
valued (a mcasure on the Borel sets of U x [0,%)) random variable m(-) is an
) admissible relaxed control if Ifgf(s,a)m(dsda) is progressively measurable for
each bounded and continuous f(-) and m([0,t] x U) = t. If m(-) is admissible,
then there is a derivative my(-) (defined for almost all t) which is non-

, anticipative and

r Jl’(s,a)m(dsda) = r ds I f(s,a)m’(du)

0 0
for all t w.p.l. Sometimes we use the ‘feedback’ relaxed control (which we
writc as m_(-)) which is a measurc on the Borel sets of U for each x and
m_(B) is Borcl-measurable for each Borel B. The m(-) and m.(-) will also be
referred to as rclaxed controls.

An admissible relaxed contol m(-) for (2.1) is also a measure valued
random variable (as above) but J'Bf(s,a)m(dsda) is progressively measurable
with respect to {F§), where F§ is the minimal o-algebra measuring {§€(s), x€(s),
s € t). Also, we impose m([0,t] x U) = t. As above, there is also a derivative

m(-), where the m(B) are }’f measurable for Borel B. We sometimes use the

symbol m€(-) or m&(-) for the relaxed controls, when (2.1) is used.

Dcfinition. Let q(-) be progressively measurable with respect to {ff).

Suppose that there is a progressively measurable (with respect to (Ff}) g(-) o

I A N N St S e N
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such that
(1) .:»g{) Elg(1)} < =, Ejg(t+s) —g(t)) =0 as s 3 0, each t,

Efq(t+8) — q(t)
(2) sup E|=—— 80| <=

6>0

Efq(t+8) — q(1)
3 lim E| = - gt | -0, eacht.
3) lim | . g(t) each t

Then we say that q(-) € D(A"“‘), the domain of the operator A™€ and

that A™€q = g. If q(-) € D(A™¢), then [3, Chapter 3), [12],

t A
(4) a(t) -J A™€q(s)ds

0
is a marting:ﬂc. This martingale property will be heavily used in the proofs.
We define A€ to be A™€ with m, concentrated at « and AY€ is defined in
the obvious way.

The form given for A™€ in Theorem 1 satisfy (1) - (3) if | G(x,@)m,(da)
is right continuous w.p.1. Generally, since we are only concerned with the use
of :\"‘-‘q in an integral — to get the martingale property (4) — the given forms
work in generai. Alternatively, they are precisely what one gets via the
following procedure. Let t = NA for integer N and consider the following
expression {or (}’f)-progrcssivcly measurable q(-) with s:zp Elq(t)) < =

N-1
(5) at) = q(0) ~ I Ej[q(is + &) — q(ia))
Suppose that there is a progressively measurable g(-) such that the right side

of (5) converges to L')g(s)ds in mean as & = 0, for each t. Then

T W L

"lf"'?' "."0 .l.l."'h."l.l.! "o"u ‘!' 1 8V, Tt Bty l.' by l‘u.i.l'- a0, 08,8, Yt P Sy .‘o " e S5,
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) at) - q(0) - j g(s)ds )
[¢]

N is a zero mean (F&)-martingale and we write g € A™€) and g = A™€q,
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5. Convergence of Pathwisc Discounted Costs to the Ergodic Cost

In this section, we treat the discounted cost result (J.9). Again, the exact
sense in which the m€(.) are 8,-optimal is left a little vague. Since ub(.) is
asymptotically 6-optimal, no matter what the m€(-) are, the pathwise costs are
(for small B,e) no better (modulo 26) than the costs for the m€(-), with an

arbitrary large probability.

Theorem 3. Under the conditions of either Theorem 1 or 2, the limits

(1.9) hold.

Remarks on the Proof. The proof is essentially the same as those of
Theorems 1 or 2, and we only remark on the diffcrences. We use the

discounted occupation measures

PE¢(BxC) = B J

. . eB]m‘(C)dt’

PE(Bx C) = B I B, ey (O)dt
0

and analogously for the feedback control cases.

Then the cost can be written as
VE(m®) = Ik(x,a)Pg*‘-‘(dxda).
€ 3
By the tightness conditions (A2.7), (A2.8), the (P§ '€(-)} and (P" :€(.)} are

tight. Dcfine

(5.2) £§(t) = Be-Be £é(n).

e
AL D N A e Tt

B R e e e e e
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This will be used in lieu of the f€(.) in either Theorems 1 or 2. We have
aA_€ a_ €

(5.3) AmT €81 = —B2e-Brrf) + BeBrA Crg).

Definc the martingale

t
£5(1) - 1§(0) - L AmS€rg(s)ds

t
= BeBire(r) - Bre(o) - I (B%Bire(s) + Be-BrAm® €1¢(5))ds.
0

As in Theorems 1 or 2

t
(5.4) 0= J]im BI e'B'Am‘f(x‘(s))ds.
(Be)wo
t-om
Thus
. €
(5.5) 0= (B?é;n_.o J' A% (x)PE (dxdw).

€
Again we choosc weakly convergent subsequences of the (P'é‘ €(-)) or

)
(P‘é ¢(-)) and continue as in the proofs of either Theorems 1 or 2 to get

Theorem 3.
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